Homework 1

due 9/5/06

1. Energy Scales:

- a) Find magnetic field at which $\mu_B H = E_F$ for a typical metal.
- b) Fing magnetic field at which $\mu_B H = k_B T$.
- c) Find temperature at which $\mu_B H = k_B T$ for H = 1 Tesla.

2. Magnetic levitation of a diamagnetic sphere

a) Suppose a uniform in an xy - plane magnetic field changes with height, z, as

$$H\left(z\right) = H_0 \frac{a^3}{z^3}$$

where H_0 and a are constants and z > 0.

A small perfectly diamagnetic ball of mass density ρ is placed in such field. Find the distance z_0 at which the balle will be stationary (levitating) above the ground. Estimate z_0 it numerically for $H_0 = 1$ Tesla (remember we work in cgs!), a = 1 cm and $\rho = 7$ g/cm³.

- b) Speculate on the size dependence of the levitating ball.
- c) Using Maxwell equations and magnetic induction profiles throughout a ball provide reasoning why there can be no truly perfect diamagnet.